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HYBRID SYSTEMS WITH FINITE BISIMULATIONS 

GERARDO LAFFERRIERE, GEORGE J. PAPPAS, AND SHANKAR SASTRY 

ABSTRACT. The theory of formal verification is one of the main approaches to hybrid system 
analysis. A unified approach to decidability questions for verification algorithms is obtained by 
the construction of a bisimulation. Bisimulations are finite state quotients whose reachability 
properties are equivalent to those of the original infinite state hybrid system. This approach 
has had success in the reachability analysis of timed automata and initialized rectangular 
automata. In this paper, we use recent results from stratification theory, subanalytic sets, and 
model theory in order to extend the state-of-the-art results on the existence of bisimulations 
for certain classes of hybrid systems. 

1. INTRODUCTION 19981230 011 
Hybrid systems consist of finite state machines interacting with differential equations, various 
modeling formalisms, analysis, design and control methodologies, as well as applications, can 
be found in [2, 3, 4, 10, 16]. The theory of formal verification is one of the main approaches 
for analyzing properties of hybrid systems. The system to be analyzed is first modeled as a 
hybrid automaton, and the desired property is expressed using a formula from some temporal 
logic. Then, model checking or deductive algorithms are used in order to guarantee that the 
system model indeed satisfies the desired property. 

Verification algorithms are essentially reachability algorithms which check whether trajecto- 
ries of the hybrid system can reach certain undesirable regions of the state space. Since hybrid 
systems have infinite state spaces, decidability of verification algorithms is very important. 
Decidability results for analyzing hybrid systems consider special finite state quotients of the 
original infinite state hybrid automaton called bisimulations. Bisimulations are reachability 
preserving quotient systems in the sense that checking a property on the quotient system is 
equivalent to checking the property on the original system. Showing that an infinite state 
hybrid automaton has a finite state bisimulation is the first step in proving that verification 
procedures are decidable. This approach has yielded several classes of decidable hybrid sys- 
tems including timed automata [1], initialized rectangular automata [20], and linear hybrid 
automata [11]. Some undecidable classes have also been discovered in [12]. Computing finite 
bisimulations is clearly related to the problem of obtaining discrete abstractions of continuous 
systems which has been considered by [21, 17, 5] as well as [8]. 

Since the discrete dynamics are already finite, it is clear that decidability results for hybrid 
systems depend crucially on the success of obtaining finite bisimulations for continuous dy- 
namics. The cases considered so far in the literature dealt with simple dynamics: x = 1 for 
timed automata [1], x € [a, b] for rectangular automata [20], and Ax < b for linear hybrid 
automata [11].  In this paper, we extend the bisimulation methodology to hybrid systems 
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jdth more general dynamics. We describe an algorithm which, upon termination, provides 
the desired finite bismilarity quotient. In order to investigate classes of systems for which the 
algorithm terminates, we combine mathematical techniques from differential geometry and 
recent results m logic model theory. With these new tools, we prove the existence of finite 
Disinflations for various classes of hybrid systems with planar continuous dynamics   This 
convergence of mathematical logic and differential geometry also provides a natural frame- 
work for extending the decidability frontier for more general classes of hybrid systems Such 
extensions will require pushing the boundary of decidable theories in mathematical logic. 

Abstracting a discrete graph from a hybrid system requires the analysis of trajectories of vector 
fields and their intersection properties relative to a given collection of sets. Considering hybrid 
systems with arbitrary dynamics and arbitrary state partitions would soon lead to pathological 
situations. Subanalyüc sets [6, 13, 23] provide a rich class of sets which have many desirable 
local intersection properties with trajectories of analytic vector fields. Subanalytic sets can 
also be partitioned into smooth embedded submanifolds in a form suitable for constructing 
a^simulation.  Such partitions are called stratifications.  Moreover, we show that relaxing 
the class of vector fields or sets in some naive ways leads to pathological situations. On the 
other hand, the concept of o-minimal theories in logic [26, 27, 28] identifies classes of sets 
with good intersection properties suitable for the global study of trajectories of vector fields 
The combination of techniques from both fields highlights the kind of properties of sets that 
play a central role in obtaining discrete abstractions. 

rf ?r^t-ne °f th.e PaP? ISc aS.follows: In Section 2 ™ review the notion of bisimulations 
of transitions systems, n Section 3 we define the class of hybrid systems under study and 
describe the mam algorithm of the paper (Algorithm 2). Section 4 presents some basic 
facts about stratification theory and subanalytic sets and relates them to the construction 
of bisimuladons. In Section 5 we present recent results in model theory which are used In 
Section 6 m order to obtain classes of systems for which the bisimulation algorithm terminates 
Section 7 contains conclusions and issues for further research. 

2. BISIMULATIONS OF TRANSITION SYSTEMS 

Weadopt here the terminology of [11] slightly modified for our purposes. A transition system 
- [V,L-> ,QO,QF) consists of a (not necessarily finite) set Q of states, an alphabet E of 

events a transition relation ->g Q x E x Q, a set Qo C Q of initial states/and a sei QF C Q 

tt • IT'"' ,   ^r^fo'?*) €~>is denoted » 9i A 92- The transition system k 
finite if the cardinality of Q is finite and it is infinite otherwise. A region is a subsetP CO 
Given a e E we define the predecessor Prea{P) of a region P as -V< 

<21) Preff(P) = {geQ\3p€Pmdq^p} 

Given an equivalence relation ~C Q x Q on the state space one can define a quotient tran- 
sition system as follows Let Q/ ~ denote the quotient space. For a regionV^denote 
by PI - the collection of all equivalence classes which intersect P. The transition relation 
-+~ on the quotient space is defined as follows: for QUQ2 € <?/-, Qx *>„ Q2 iff there exist 
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9i € Qi and q2 € Q2 such that qx A q2.  The quotient transition system is then T/ ~= 
(Q/~,2t->~,Qo/~,QF/~). 
Given an equivalence relation ~ on Q, we call a set a ~-block if it is a union of equivalence 
classes. The equivalence relation ~ is a bisimulation of T iff (&>, QF axe ^-blocks and for all 
a € £ and all ~-blocks P, the region Pre„{P) is a ~-block. In this case the systems T and 
T/~ are called bisimilar. We will also say that a partition is a bisimulation when its induced 
equivalence relation is a bisimulation. A bisimulation is called finite if it has a finite number 
of equivalence classes. Bisimulations are very important because bisimilar transition systems 
generate the same language [11]. Therefore, checking properties on the bisimilar transition 
system is equivalent to checking properties of the original transition system. This is very 
useful in reducing the complexity of various verification algorithms where Q is finite but very 
large. In addition, if T is infinite and T/~ is a finite bisimulation, then verification algorithms 
for infinite systems are guaranteed to terminate. Successful applications of this approach for 
hybrid systems include timed automata [1], initialized rectangular automata [20], and linear 
hybrid automata [11]. It should be noted that the notion of bisimulation is similar to the 
notion of dynamic consistency [7, 8, 18]. If ~ is a bisimulation, it can be easily shown that if 
p ~ q then 

Bl: p € QF iff 9 € QF, and p € Qo iff q € Qo 
B2: if p A p' then there exists q' such that q A q' and p' ~ q1 

Based on the above characterization, given a transition system T, the following algorithm 
computes increasingly finer partitions of the state space Q. If the algorithm terminates, then 
the resulting quotient transition system is a finite bisimulation. The state space Q/~ is called 
a bisimilarity quotient. 

Algorithm 1: (Bisimulation Algorithm for Transition Systems) 
Set: Q/~= {Qo n QF,Qo \QF,QF \QO,Q\ (QO UQF)} 
while: 3 P,P' € QJ ~ and a € E such that 0 ^ P D Prea(P') # P 

set: Px = PnPrea(P'), P2 = P\Prea{F) 
refine: Q/~= (Q/~ \{P}) U {PUP2} 

end while: 

Notice that each time the partition Q/ ~ is refined, the transitions are updated to account 
for the newly subdivided sets. When checking specific properties, such as reachability to the 
set QF, one might simplify the algorithm by starting with a coarser partition, for example 
{QF, Q\QF}- In general one should include in the initial partition all additional sets relevant 
to the verification problem of interest (such as safe or unsafe regions). The larger the initial 
class of sets the more difficult it is for the algorithm to terminate. 

3. BISIMULATIONS OF HYBRID SYSTEMS 

We focus on transition systems generated by the following class of hybrid systems. 

Definition 3.1. A hybrid system is a tuple H = (X, X0, A>, F, E, I, G, R) where 
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0<X<1 
1<Y<2 

X>5 0<X<1Y=l 
el 

Y<-10 X=0 Y=l      \   — 
e2 

FIGURE 1. A typical hybrid automaton 

X = XD x Xc is the state space with Xp — {gu..., qn} and Xc an analytic manifold. 
A'o C X is the set of initial states 
AV C A* is the set of final states 

TXC assigns to each discrete state q € XD an analytic vector field F(q, •) F:X 
E C XD X XD is the set of discrete transitions 
I 
G 
R 

XD 
■E- 
E- 

2Xc assigns to each discrete state a set I(q) C Xc called the invariant. 
XD x 2Xc assigns to e = (91,92) € E a guard of the form {qx} x U, U C I(qi). 
XD x 2Xc assigns to e = (qu q2) € E a reset of the form {q2} x V, V C I(q2). 

Trajectories of the hybrid system H originate at any (q,x) € X0 and consist of either contin- 
uous evolutions or discrete jumps. Continuous trajectories keep the discrete part of the state 
constant, and the continuous part evolves according to the continuous flow F(q, •) as long as 
the flow remains inside the invariant set I(q). If the flow exits I(q), then a discrete transition 
is forced. If. during the continuous evolution, a state (q, x) € G(e) is reached for some e € E, 
then discrete transition e is enabled. The hybrid system may then instantaneously jump from 
(q, x) to any (q', x') G R(e) and the system then evolves according to the flow F(g', •). Notice 
that even though the continuous evolution is deterministic, the discrete evolution may be 
nondeterministic. The discrete transitions allowed in our model are of the type allowed in ini- 
tialized rectangular automata [20]. We assume that our hybrid system model is non-blocking, 
that is from every state either a continuous evolution or a discrete transition is possible. 

Example 3.2. A typical hybrid system is shown in Figure 1. The state space is {Ql,Q2}xR2. 
The initial states are of the form {Ql} x {(x,y) € R2 | 0 < x < 1,1< y < 2}. The discrete 
dynamics consists of two transitions ex = (Ql, Q2) and e2 = (Q2, Ql). Within discrete state 
Ql, the continuous variables x and y evolve according to a differential equation as long as 
(x,y) € I(Qi) = {(x,y) € R2 | x < 5}. Once x > 5, discrete transition ex is forced and x,y 
are nondeterministically reset to values in fixed sets. The system then flows according to the 
flow associated with Q2. The evolution from that point on is similar. We would like to find 
out whether the system will reach the set of final states {Q2} x {(x,y) € R2 | x < -5}. 

Every hybrid system H = (A, A0, XF, F, E, I, G, R) generates a transition system T - (Q, E, -+ 
. Qo, QF) by setting Q = X,Q0 = X0, QF = XF, E = EU{T}, and ->= (Ue€E A)U -4 where 

Discrete Transitions: (q,x) 4 (?',*') for e € E iff (q,x) € G(e) and (qf,x') € R(e) 
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Continuous Transitions: (gl5 Xi) A (q2, x2) iff q\ = q2 and there exists 6 > 0 and a curve 
x : [0,5] —¥ M with z(0) = Xi, x(6) = x2 and for all t € [0, S\ it satisfies a:' = F(qi,x(t)) 
and x(i) € /(gi). 

The continuous r transitions are time-abstract transitions, in the sense that the time it takes to 
reach one state from another is ignored. Having defined the continuous and discrete transitions 
A and A allows us to formally define PreT(P) and Pree(P) for e € E and any region PCX 
using (2.1). Furthermore, the structure of the discrete transitions allowed in our hybrid system 
model result in 

{31) Pree{P) ~ < G(e)   ifPn*(e)#0 ■{: 
for all discrete transitions e € E and regions P. Therefore, if the sets R(e) and (7(e) are 
blocks of any partition of the state space, then no partition refinement is necessary in the 
bisimulation algorithm due to any discrete transitions e € E. This fact, in a sense, decouples 
the continuous and discrete components of the hybrid system. In turn, this implies that 
the initial partition in the bisimulation algorithm should contain the invariants, guards and 
reset sets, in addition to the initial and final sets. This allows us to carry out the algorithm 
independently for each discrete state. 

More precisely, define for any region PCX and q € XD the set Pg = {x € Xc : {q,x) e P}. 
For each discrete state q € XD consider the finite collection of sets 

(3-2) Aq = {/(g), G(e)q, R(e)g, (*0)„ (XF)«} 

which describes the initial and final states, guards, invariants and resets associated with 
discrete state q. Let Sq be the coarsest partition of Xc compatible with the collection Aq (by 
compatible we mean that each set in Aq is a union of sets in Sq). The (finite) partition Sq can 
be easily computed by successively finding the intersections between each of the sets in Aq 
and their complements. These collections Sq will be the starting partitions of the bisimulation 
algorithm. 

Algorithm 2: (Bisimulation Algorithm for Hybrid Systems) 
Set:A7~ =U9S, 
for: q £ XD 

while: 3 P,P'€ 5, such that 0#PnPreT(P')# P - --- 
Set: Pj = PnPreT(P'); P2 = P\PreT{P') 
refine: Sq   = (5,\{P»U{P1,P2} 

end while: 
end for: 

A few comments are in order here. The key problem is to investigate how the flow of F(q, •) 
interacts with the sets Sg for a single discrete state q. This requires that the trajectories of the 
vector field F(q, ■) have "nice" intersection properties with such sets. Since the goal is to obtain 
finite partitions, it will become important that we restrict the study to classes of sets with good 
"finiteness" properties, for example, sets with finitely many connected components. In the 
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subsequent sections we identify classes of sets and vector fields which exhibit such properties 
and for which Algorithm 2 terminates. 

One can also view the partitions in the algorithm as a way of discretizing the system trajecto- 
ries. This suggests studying the continuous transitions by looking only at the points at which 
the trajectories move from one set in Sq to an "adjacent" one. This is in general not possible 
because sets could have rather pathological boundaries (see also Example 4.8). We will see in 
the next section that subanalytic sets are free from such pathologies and that in fact one can 
formalize the idea of trajectory discretization associated to the partition in that case. 

We conclude this section with an example that shows that, even in apparently simple situa- 
tions, Algorithm 2 does not terminate. 

Example 3.3. Let F be the linear vector field t:'.) x on R2. Assume the partition 

of R2 consists of the following three sets (see Figure 2): Px = {(x,0) : 0 < x < 4}, P2 = 
{(*, 0) : -4 < x < 0}, P3 = R2 \ (Pi u P2). The integral curves of F are spirals moving away 

FIGURE 2. Algorithm 2 does not terminate 

from the origin. The first iteration of the algorithm partitions P2 into P4 = P2 D PreT{Px) = 
{(x,0) : a < x < 0} and P2 \ PreT(Pi). Here xx < 0 is the x-coordinate of the first 
intersection point of the spiral through (4,0) with P2. The second iteration subdivides Px 

into P5 = A n PreT(P4) = {(x,0) : 0 < x < x2] and Px \ Prer(P4) where x2 > 0 is the 
x-coordinate of the next point of intersection of the spiral with Px. This process continues 
indefinitely since the spiral intersects Px in infinitely many points, and therefore the algorithm 
does not terminate. 

4. SUBANALYTIC SETS AND STRATIFICATIONS 

In this section we describe some fundamental properties of subanalytic sets (see [6,13, 23] for 
more details). A differentiable manifold is real analytic (Cu) if the transition maps between 
local coordinate charts are analytic functions on their domains (which are open subsets of Rn). 
An embedded submanifold 5 of a manifold M is a topological subspace of M together with a 
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differentiable structure such that the inclusion from S into M is a smooth immersion (i.e. has 
full rank at every point). A vector field F on the real analytic manifold M is analytic if its 
coordinates in any local chart are analytic. If F is an analytic vector field then any integral 
curve of F is analytic. 

Let M and N be real analytic manifolds and let CW(M, N) denote the set of analytic functions 
from M into N. If / € CU(M, N) we say / is of class Cw. Given an analytic manifold U, we 
denote by H(CU(U,R)) the Boolean algebra generated by the sets of the form {x : f{x) = 0} 
or {x : f(x) > 0}, where / € CU(U, R). 

Definition 4.1. Let M be a real analytic manifold. A subset A of M is semianalytic in M if 
for every p € M, there is an open neighborhood U of p in M such that UD A € £(C""(£/, R)). 
If A C M is semianalytic in M we write .4 € SMAN(M). 

Definition 4.2. Let M be a real analytic manifold. Define SBANrc(A/) and SBAN(M) by 

1. A € SBANrc(M) if and only if there is (N, f, A*) such that N is a real analytic manifold, 
/ e CU(N, A/), A* € SMAN(N), ,4' is relatively compact and A = /(^*); 

2. J4 € SBAN(M) if and only if A is the union of a locally finite collection of members of 
SBANrc(M). (A collection of sets C is locally finite if any compact set intersect only 
finitely many sets in C.) 

We say that A is subanalytic in M if A € SBAN(M). It is easy to see that A € SBANrc(M) 
if and only if A is subanalytic in M and relatively compact. The following properties of 
subanalytic sets are easily derived from the definitions. 

1. SBAN(il/) is closed under locally finite unions and intersections. 
2. If A € SBAX(M) and /: M —> N is of class C" and proper on A, the closure of A, 

then f(A) € SB AN (TV). (A function / is proper if f~l(K) is compact whenever K is.) 
3. If A € SBAN(iV) and /: M —♦ N is of class C, then f~l(A) € SBAN(M). 

The following two properties require more subtle proofs, but they give the first indication that 
this will be a suitable class of sets for our studies. 

4. If A € SBAN(M) then M \ A e SBAN(M). 
5. A subanalytic set has a locally finite number of connected components, each of which is 

subanalytic. 

Example 4.3. Points are subanalytic, and so is any locally finite union of points, for example 
Z" as subset of Rn. The empty set and M are both in SBAN(M). Let o, b € R, a < b, then 
[a, b], [a, b), (a, b] and (a, 6) are subanalytic in R. The open ball B(p, r) centered at p of radius 
rinR" is in SB AN (Rn). 

Definition 4.4. Let M be a real analytic manifold. An analytic (Cw) stratification of M is 
a partition S of M with the following properties: 

1. each S € S is a connected, real analytic, embedded submanifold of M, 
2. 5 is locally finite, __ 
3. given two sets S,P e S, P # 5, such that SnP =£ 0 then S C P and dimS < dimP. 
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The sets in a stratification are called strata. 

The central result on stratifications for our analysis is the following. For a proof see [22]. 

Theorem 4.5. Let A be a locally finite family of nonempty subanalytic subsets of a real 
analytic manifold M. For each A € A, let F(A) be a finite set of real analytic vector fields on 
M. Then there exists a subanalytic stratification S of M, compatible with A, and having the 
property that, whenever S € S, S C A, A € A, X € F{A), then either (i) F is everywhere 
tangent to S or (ii) F is nowhere tangent to S. (S is compatible with A is every set in A is 
a union of sets in S.) 

Theorem 4.5 is illustrated by the following example. 

Example 4.6. Let F be the following analytic vector field on R2 

x  =   x2 + y2 

V  =   0 

which has an isolated equilibrium at the origin and points in the positive x-direction otherwise. 
Consider the following two subanalytic sets 

Si   =   {(x,y)eR2\y>0   and   {x - l)2 + y2 = 1} 
52   =   {(x, y) € R2 | y = 0   and   0 < x < 2} 

shown in Figure 3. A subanalytic stratification of R2 which is compatible with the sets Si, S2 

and the vector field F is also shown in Figure 3. It consists of 

• O-dimensional strata 
- Py = (0,0), P2 = (2,0), and P3 = (1,1) 

• 1-dimensional strata 
- Ci = {(x, y) e R2 | y = 0 and 0 < x < 2} 
- C2 = {(x,y)£R2 I y > 0 and 1< x < 2   and   (x - I)2 + y2 = 1} 
- C3 = {(x,y)eR2 j 2/ > 0 and 0 < x < 1   and   (x - l)2 + y2 = 1} 

• 2-dimensional strata 
- Di = {{x,y)eR2\y>0   and   (x - l)2 + y2 < 1} 
-D2 = R2\{Pi,P2,P3,CuC2,C3,D1} 

Notice that the vector field is tangent to Pi since it is an equilibrium as well as to Ci, Di and 
D2. The vector field is transverse to all the other strata. Moreover, Si = Pi \JP2\JP3\JC2\JC3 

and 52 = PiUP2UCi. 

In view of the above properties we will restrict our study to hybrid systems for which the 
relevant sets are all relatively compact and subanalytic. 

Assumption 1 : For each discrete state q the collection Ag consists of relatively compact 
subanalytic sets. In particular, we assume there exists a compact set K such that if A € Aq 

then A C K. 
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FIGURE 3. Subanalytic stratification example 

The partition Sq which serves as the initialization step of Algorithm 2 can now be assumed 
to be a subanalytic stratification compatible with Aq and the vector field F(q, •) (as given by 
Theorem 4.5). 

The following proposition illustrates some of the good intersection properties that analytic 
curves have with subanalytic sets. The "finiteness" property indicated in the proposition 
makes it possible to define transitions between adjacent strata in a natural way. 

Proposition 4.7. Let I be an open interval, M a real analytic manifold andj: I —> M a real 
analytic function. Let S be aCw stratification of M by subanalytic sets If [a, b] C I then there 
exists a finite partition {xi,... ,xn} of [a, b] with the property that for each i = 1,... , n — 1 
there exists a stratum 5,- € S such that ~f((xi, Xi+i)) C S{. 

Proof. The family I = {7~1(^) n [a,6]: 5 € 5} is a finite partition of [a,b] by subanalytic 
sets. Each such set consists of a finite number of points and open intervals. Using all such 
points and the endpoints of such intervals gives the desired partition. D 

The following example shows the type of pathological situations that can be encountered if 
the assumption on subanalyticity is even slightly relaxed. 

Example 4.8. Consider the stratification of R2 by the following five sets: 

Si   =   {(0,0)} 

1S2   =   \ (x,y)'- x > 0 A y = arsin- > 

53   =   < (x,y): x < 0 A j/ = xsin- > 

S*   =   Ux,y):x?0 A y>xsm-\\J{(0,y):y>0} 

Ss   =   Ux,y):x?0 A y < xsm-\\J{(0,y): y <0} 
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FIGURE 4. Infinite crossings on a compact interval 

Notice that Si, S2 and S3 form the graph of the function f(x) = xsin^ (/(0) = 0), while 
S4 and S5 denote the region above and the below the graph, respectively. Each set is a Cu, 
embedded submanifold of R2 and they clearly satisfy the condition on the dimension of the 
strata in the closure of other strata. Finally, consider the constant vector field F = ^. Then 
the integral curve 7 of F through (0,0) is the x-axis (parameterized by x itself). Therefore, 
the image by 7 of any interval containing 0 intersects both S4 and S5 an infinite number of 
times. This is reminiscent of the undesirable zeno property which allows an infinite number 
of switches in finite time. 

Since the algorithm considers one discrete state at a time, we will simplify the notation by 
assuming that the discrete state q is fixed and drop it as a subscript. In particular we will 
consider a vector field F and a stratification S of Xc by subanalytic sets as provided by 
Theorem 4.5. By A'c/~ we will mean the partition of Xc induced by S. We will denote by 
7r the integral curve of F which passes through x at time 0, i.e. with 7X(0) = x. 

We now proceed to formalize the notion of a discretization of the continuous transitions relative 
to a given partition S. We do this mainly it simplifies the arguments in the proof of the main 
theorem (Theorem 6.1). In addition it supports the intuitive picture we have that a trajectory 
can be decomposed as a concatenation of pieces in each of the sets in S. 

Definition 4.9 (Transition relative to S: version 1). Given x,y € Xc we say x -> y iff there 
is t > 0 such that *yx(t) = y and there exists S € S such that 7x(s) € S for 0 < s < t and at 
least one of x, y is in S. 

To clarify this concept and to facilitate further discussions and proofs we introduce additional 
definitions. 

Definition 4.10. Given two subsets Si, S2 of Xc, and a real analytic curve 7 : J —► Xc 
where / is an open interval, we say that 7 leaves Si through S2 (or enters S2 from Si) if one 
of the following exiting conditions is satisfied: 

El: there exist a,be I, a<b, such that 7(f) € Si for all t € (a,6) and 7(6) € S2 
E2: there exist a, b € /, a < b, such that 7(a) € Si and 7(2) € S2 for all t € (a, 6). 
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When x € Si we say that 7X leaves S\ trough S2 if either El or E2 holds with a = 0. 

The following proposition is a simple application of Proposition 4.7 and shows that Defini- 
tion 4.10 covers all possible "exiting" situations for strata of 5. 

Proposition 4.11. Let Si € S and y be as above. If there exists to, <i € J such that j(t0) € Si 
and 7(<i) 0 Si then there exists a stratum S2 f# Si) suck that either El or E2 holds. 

It is clear from Definition 4.10 that in case El, S2f")Si # 0. By the properties of stratifications, 
we conclude S2 C Si and dimS2 < dim Si. Therefore, the flow exits the stratum Si though a 
stratum of lower dimension. Similarly in case E2, Si C S2 and dim Si < dimS2 and the flow 
enters S2 from a stratum of lower dimension. The following proposition further clarifies the 
possible exit situations. 

Definition 4.12. We call a stratum S € S tangential if the vector field F is tangent to S at 
every point of S. We call a stratum transversal otherwise. 

Proposition 4.13. Let Si, S2 be strata in S and 7 an integral curve of F which leaves Si 
through S2. Then one (and only one) of the following holds: 

1. condition El holds, Si is a tangential stratum and S2 is a transversal stratum. 
2. condition E2 holds, Si is a transversal stratum and S2 is a tangential stratum. 

We can now give the alternative definition of relative transitions. 

Definition 4.14 (Transition relative to S: version 2). For each x € Xc let S(x) denote the 
unique stratum in S which contains x. Given x, y £ Xc we say x -» y iff 7X leaves S(x) 
through S(y). 

It is clear from Proposition 4.7 that x -4 y iff there exist xu... ,xn such that i4ii 4 
S S S 

... -¥ xn -¥ y. We will denote the Pre operator associated to -4 by Pres- The above remark 
also implies that we can substitute Pres for Prer in Algorithm 2 in the sense that if the 
algorithm terminates using Pres then it also terminates when using PreT. 

As the stratification Theorem 4.5 shows, issues of transversality of trajectories can be analyzed 
within the context of subanalytic sets and analytic vector fields. However, the study of 
continuous transitions requires that we investigate the global behavior of trajectories. In 
general, trajectories of analytic vector fields (and much less their full flows) are not subanalytic. 
Identifying vector fields whose flows belong to a suitable class is the main obstacle in the study 
of bisimulations of hybrid systems. Recent developments in logic model theory provide some 
answers as well as suggest the proper context in which to carry on further studies. 

5. MODEL THEORY 

Model theory studies structures through properties of their definable sets (see [14, 25] for gen- 
eral background). The basic structures of interest for this paper are that of the real numbers 
as a complete ordered field, symbolized by (R, +, -, x, <, 0,1), and its extensions. Every such 
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structure L has an associated language £ of formulas. The (first order) formulas over C are 
the well-formed logical expressions obtained by using logical connectives, quantifiers 3 V, real 
numbers as constants, the operations of additions and multiplication, and the relations < and 
= (quantification is allowed over variables). All formulas will be interpreted over the real 
numbers. A definable set in the language C (or of the structure L) is a subset of Rn (for some 
n) of the form {(aj,..., a„) € R" : $(ai,...,a„)}, where $(xi,... ,xn) is a formula in C and 
x\,..., xn are free (i.e. not quantified) variables in $. A function / is definable if its graph is 
a definable set. 

While many of the concepts here apply to more general structures, in all that follows we 
consider only structures over the real numbers. 

Definition 5.1. The theory of £ is o-minimal ("order minimal") if every definable subset of 
R is a finite union of points and intervals (possibly unbounded). 

Tarski [24] was interested in the extension of the theory of the real numbers by the exponential 
function, (R, +, -, x, <, 0, l,exp) (i.e., there is an additional symbol in the language for the 
exponential function). We denote this structure by Rexp- While such theory does not admit 
elimination of quantifiers, it was shown in [27] that such theory is model complete, which in 
turns implies that it is o-minimal. Another important extension is obtained as follows. Assume 
/ is a real-analytic function in a neighborhood of the cube [—1, l]n C Rn. Let /: Rn —► R be 
the function defined by 

c)   ifz€ [-l,l]n 

■ {r 1 n otherwise 
We call such functions restricted analytic functions. The structure Rexp,an — 
(R, +, -, x, <, 0, l,exp, {/}) is then an extension of ReXp where there is a symbol for each 
restricted analytic function. One reason this structure is relevant for this paper is that all 
relatively compact subanalytic sets are definable in Rexp.an • Moreover, if F is a linear vector 
field in R" with real eigenvalues, then the trajectories of F are definable in ReXp,an- In [26], it 
was shown that Rexp.an is also o-minimal. Finally, there are a few consequences of o-minimality 
that are crucial for our results. We list them below under one proposition. The proofs are 
contained in the various references mentioned above. 

Proposition 5.2. Assume L is an o-minimal structure. Then 

1. Any definable set has a finite number of connected components, each of which is a defin- 
able set. 

2. If A is definable, then so is its (topological) closure. Moreover, dimFr(A) < dirndl, 
where Fr(A) = A \ A is the frontier of A and the dimension of a set B C R" is the 
maximum integer d for which there is an embedded C1 manifold o/R" contained in B. 

3. Given definable sets Ai,... ,Ak in Rn (and for any integer p), there is a finite C strat- 
ification o/Rn compatible with {A\,... , Ak}. In fact, for the structure R«p,on the strata 
are definable (real) analytic manifolds. 

We are now ready to apply these results to prove that Algorithm 2 terminates for certain 
classes of planar systems. 
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6. FiNiTENEss RESULTS 

In this section we use the model theoretic tools of Section 5 in order to obtain classes of 
systems for which the Bisimulation Algorithm of Section 3 terminates. 

Recall that given the family of sets A as in Assumption 1, and the vector field F we first 
obtain a stratification S compatible with A as given by Theorem 4.5. We will also assume 
that S is compatible with a compact subanalytic set K which contains all sets in A. We define 
SK = {S € S : S D K # 0} (which is therefore finite). 

Theorem 6.1. Let Xc = R2, F be the linear vector field Ax and assume that the eigenvalues 
of A are real. Then the bisimulation algorithm for hybrid systems (Algorithm 2), initialized 
with SK, terminates. 

Proof. We will consider the case when the origin is the only equilibrium of F. (The other 
cases require minor modifications.) We assume without loss of generality that {(0,0)} € «Sjc- 

As indicated in Section 3 it suffices to study only the evolution of the continuous variables 
and use Pres in Algorithm 2. To simplify notation we will simply refer to it as Pre. In 
order to show that the bisimulation algorithm terminates we will construct a finite refinement 
of SK which is "invariant" under the Pre operation and which is a refinement of Xc/ ~ at 
each step. 

For each stratum <S € £*• with (0,0) € S we consider the set 

5oo = {x€5:Vt>0 jx(t)eS} 

As mentioned earlier, since the eigenvalues of A are real, the flow of F, $(z, t) = jx(t) = etAx 
is definable in ReXp,an (the entries in etA involve polynomials and real exponential functions). 
Therefore, the set 5«, is definable. For each stratum T of dimension one with T CS,T^S, 
we consider the set 

T, = {x e T: 7X leaves T through 5«,} 
The set T, is also definable in ReXp,an and therefore can be written as a finite, disjoint union 
of definable sets each of which is either a point or homeomorphic to an open interval. We 
may assume, by refining the original SK if necessary that the finitely many points in the 
decomposition of T* are already strata of SK- 

For each x € R2 let Tx denote the trajectory of F passing through x, that is 

r* = (7x(<): t € R}. 

For each stratum S € S and x £ 5, let TX(S) denote the connected component of Tx D S 
which contains x. It is clear, from the definition of 5», that if x e 5» then Tx(5) C 5«,. 
From this it follows that if x € T and -yx leaves T through S then yx either leaves T though 
Soc or leaves T through S \ St». 

Let {pj},... ,{pi} be all the 0-dimensional strata of SK- Notice that for each i,j, if FPi nl^. ^ 
0, then rPl = TPj. We will eliminate redundancies and assume that the TPi are pairwise 
disjoint. For each set S e SK and each rp,., the sets S n TPi and S \ UiTPi are definable in 
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Kexp,an (Intuitively, these sets are partitions of S "in the direction of the flow of F"). By 
o-minimality, we get that each such set has a finite number of connected components. Let 
B denote the (finite) collection of all such connected components. The collection B is then a 
partition of K compatible with S (every set in S is a union of sets in B). 

Claim: At each step of the bisimulation algorithm, B is compatible with Af/~. 

The claim shows that B is finer than all partitions obtained at each step. Since B is finite, 
this proves that the algorithm terminates. 

To prove the claim we first show that if P* G B for i = 1,..., n then 

(6.1) Pre(UBi) = UPre(Bi) 

We will call a set B G B tangential if B is contained in a tangential stratum of S (i.e. B is a 
connected component of either SnTq or 5\urp. with S tangential). The set B will be called 
transversal otherwise. Notice that if B is tangential and x € B then Tx(S(x)) C B. 

Let x G Pre(Bi) for some i = 1,... , n and x & Bi. Suppose 7x(t) G S(x) for 0 < t < S and 
7*(<5) G Bi (i.e. exit condition El). In particular, S(x) is a tangential stratum. If 7x(i) g UP,- 
for t < 6, then x G Pre(uPj). If 7X(<) € UP* for some t < S, then for some j, Bj is tangential, 
so Tx{S{x)) C Bj and x G Pre(UPj). If, instead, 7x(t) € £, for 0 < t < 6 (exit condition E2), 
then clearly x G Pre(UPj). 

Conversely, let rr G Pre(uPi). If 7*(<) € S(x) for 0 < < < 6, 7x(5) € US,, let t0 be such that 
7x(6) € Bio. Then a; € Pre(£io) c UPre(Bi). If, instead, 7x(t) G UP* for 0 < t < S, then 
there is a 60 > 0 and a Bio which contains yx(t) for 0 < t < S0 (here we used o-minimality 
again to conclude that Tx intersects each Bi in a finite disjoint union of points and arcs). 
Therefore, x G Pre(Bio). This conclude the proof of (6.1). 

By construction, B is compatible with SK- At each step of the bisimulation algorithm we 
need to show that if B = U?=1£i and B' = UJL^ with £,, B[eB then B n Pre(P') is again 
a finite union of sets in B. Based on (6.1) it will sufiice to show that for B,B' G B, either 
B D Pre(P') = 0 or B n Pre(P') = P. 

We consider several cases. The set B is of one of the two forms: (a) a connected component 
of S D TPi, or (b) a connected component of S \ UTPi. 

If S is O-dimensional there is nothing to show because B contains a single point. 

If 5 is 1-dimensional and B is of type (a), then either S is transversal and B consists of a 
single point or S is tangential and so B = TX(S) for any x € B. The first case is again clear. 
In the second case, if there isi6 5n Pre(B') then there exists 6 > 0 such that 7x(t) e S 
for 0 < t < S and 7X(<J) G B'. But then for all y € TX\S), -yy leaves S through B'. So 
B = Tx(5) C Pre(B'). 

If 5 is 1-dimensional and B is of type (b) then we again consider separately the cases when 
S is tangential and when S is transversal. In the first case we proceed as before. Assume 
now, that S is transversal. Notice that if x G B n Pre(B') then Ts intersects both B and 
B'. Therefore B' is also a connected component of S' \ \JTp. (for some 5"). By transversality, 
7X leaves S intro S' under exit condition E2 and so S C Fron(S') (=!P\ S') and S' is 
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2-dimensional. By continuity of the flow of F, there is an open neighborhood N of x such 
that for y G N D B, 7y leaves S through S'. Moreover, since there are finitely many TPi we 
may assume (by taking N smaller) that yy leaves S through £'. We have then showed that 
the set E = {x € B : jx leaves S through B'} is open in B. Suppose E ± B. Then there is 
y € B in the frontier of E. We can find a neighborhood W of y such that W n TPi = 0 for 
all i. Since 5' is open in R2, and S is transversal, we can find a neighborhood W0 C W of y 
and e > 0 such that for z € W0 n 5 and 0 < t < e we have 7*(<) € W n 5'. But then every 
such z belongs to E. This contradicts the fact that y is a frontier point. Therefore, E is also 
closed in B and so it must equal B (since B is connected). We conclude in this case that 
B = Br\Pre(B'). 

There is only one case remaining: 5 of dimension 2 (and hence tangential). If B is of type (a) 
then TX(S) = B and we are done as before. 

Assume then that B is a connected component of S \ UTPi, B' a connected component of 
5' \ urpi, S' is transversal, and dim S' — 1. (The case with 5' O-dimensional is excluded since 
in that case S' D TPi -^ 0 for some i.) 

LetxeBD Pre(B') and assume there is y € £ \ Pre(B')- We want to show that this leads 
to a contradiction. Let a : [0,1] -► B be a curve connecting x to y. Let tQ be the smallest 
< € [0,1] such that 7a(t)(s) £ #' for some s > 0. If 7a(t0)(«) € 5 for all s > 0 then a(t0) € 5,». 
By the choice of t0 we in fact have a(t0) € TPo for some p0 (see the initial subdivision caused 
by Soc). But this contradicts the fact that B is of type (b). Assume then that 7o(to)(s) £ S 
for some s > 0. For each t € [0,t0] let s(t) be the smallest s such that 7a(t)(s) £ S- Foreach 
t e [0,t0] set p{t) - ja(t)(s(t)). There are two possibilities: either p(t0) 6 S' or p(t0) € S'\S. 

In the first case choose a local chart (AT, ip) centered at p(t0) so that in ^-coordinates we have 
AT n S' = N n -B' = {(a;, 0)} and N n 5 = {(x,y) : y > 0} (therefore F points into the lower 
half plane at every point of N D B'. By continuity of the flow and transversality, we still have 
that 7Q(<) crosses N D B' from the upper to the lower half plane for t0 < t < tQ + c. But this 
contradicts the choice of to- 

In the second case, we have p(t0) € r,0 for some g0. But this contradicts the fact that B is of 
type(b). 

All this implies that every y in B must also be in Pre(B'). That is, B = B D Pre(B'). This 
concludes the proofs of the claim and the theorem. □ 

As the proof above suggests the termination of the algorithm depends on the fact that the 
integral curves of the vector field intersects relatively compact subanalytic sets in at most 
finitely many points. This allows us to get the following generalization. 

Theorem 6.2. IfF isvn analytic vector field in R2 which admits an analytic family of first 
integrals, then the bisimulation algorithm terminates. (Here, by an analytic family of first 
integrals we mean a non-constant (real) analytic function /: R2 -4 R such that for each 
trajectory 7 of F the function f{f(t)) is constant.) 
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Proof. Notice that each level curve of / is an analytic set and therefore its intersection with 
any relatively compact definable set (in Rexpian) is definable in Keep,«,. The proof then follows 
the fines of the previous one but replacing the sets TPi, with the corresponding level set of / 
(level sets of / are at most 1-dimensional since / is not constant on any open set). D 

Corollary 6.3. If F is a linear vector field in R2 with purely imaginary eigenvalues and SK 
is as in the theorem, then the bisimulation algorithm terminates. 

Proof. Unless A = 0, in which case the result is trivial, there exists an (invertible) matrix P 
such that ||Px||2 is constant along trajectories of F. n 

Corollary 6.4. If F is an.analytic Hamiltonian vector field in R2 andSK is as above, then 
the bisimulation algorithm terminates. 

Proof. The Hamiltonian is constant along the trajectories. o 

Remark 6.5. As is clear from the proofs above, the key is that all the objects involved (the 
vector field F, the initial family of sets, the flow of F) be definable in some o-minimal extension 
of the field of real numbers. We presented above just two specific instances of such a situation 
which can be easily characterized. A more recent o-minimal extension of the reals, by so called 
Pfaffian functions, was found in [28]. 

The issue of decidability is a much harder and still open problem. It is not even known if 
the theory of lexp is decidable, although in [15] it was shown that it would be a consequence 
of SchanuePs conjecture in number theory. The results we obtained in this paper suggest 
how to-find some restricted classes of vector fields for which the algorithm is constructive. 
Indeed, if all the relevant sets are semialgebraic (for example if F is a Hamiltonian vector 
field on the plane with a polynomial Hamiltonian and the initial conditions, guards, etc., are 
semialgebraic), then they are definable in (R, +, -, x, <,0,1) for which decision methods are 
known (see [9] for a related result). 

7. CONCLUSIONS 

In this paper, we presented an algorithm for on obtaining finite bisimulations of hybrid sys- 
tems. Termination was guaranteed for classes of vector fields with planar continuous dynamics. 
This was achieved by combining the geometric framework of subanalytic sets with model the- 
oretic concepts from mathematical logic. The mathematical tools used in this paper provide 
the natural platform for the study of reachability properties of hybrid systems. 

Issues for further study include the extension of the main result to R". The tools used in 
the proof of the main theorem apply to higher dimensions. The key construction in the 
two dimensional case depended on finitely many trajectories. The higher dimensional version 
requires a detailed analysis of infinite collections of trajectories, organized perhaps inductively 
according to the dimension of the strata involved. 

Bisimulations of hybrid systems with more general discrete transitions can also be considered 
in the framework of subanalytic stratifications and o-minimal structures. However,the reset 
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maps must be in some sense compatible with the flows for the procedure to terminate. In 
addition, for certain restricted classes of vector fields the algorithm can be made constructive 
(for example, for vector fields on the plane with a polynomial Hamiltonian and all relevant 
sets semialgebraic). Furthermore, if the bisimulation algorithm does not terminate (or is not 
computable), it may be useful to consider system over-approximations [19], for which the 
algorithm would terminate (or is computable). 

Acknowledgment: This research is supported by the Army Research Office under grants 
DAAH 04-95-1-0588 and DAAH 04-96-1-0341. 

REFERENCES 

[1] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science, 126:183-235,1994. 
[2] R. Alur, T.A. Henzinger, and E.D. Sontag, editors. Hybrid Systems III, volume 1066 of Lecture Notes in 

Computer Science. Springer-Verlag, 1996. 
[3] P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors. Hybrid Systems II, volume 999 of Lecture Notes 

in Computer Science. Springer-Verlag, 1995. 
[4] P Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors. Hybrid Systems IV, volume 1273 of Lecture 

Notes in Computer Science. Springer-Verlag, 1997. 
[5] P.J. Antsaklis, J.A. Stiver, and M. Lemmon. Hybrid system modeling and autonomous control systems. 

In R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors, Hybrid Systems, volume 736 of Lecture 
Notes in Computer Science, pages 366-392. Springer-Verlag, 1993. 

(6] Edward Bierstone and Pierre D. Milman. Semianalytic and subanalytic sets. Inst. Hautes Etudes Sei. 
Publ. Math., 67:5-42, 1988. 

[7] P.E. Caines and Y.J. Wei. The hierarchical lattices of a finite state machine. Systems and Control Letters, 
25:257-263, 1995. 

[8] P.E. Caines and Y.J. Wei. Hierarchical hybrid control systems: A lattice theoretic formulation. IEEE 
Transactions on Automatic Control: Special Issue on Hybrid Systems, 43(4), April 1998. 

[9] Karlis Ceraus and Juris Viksna. Deciding reachability for planar multi-polynomial systems. In R. Alur, 
T. Henzinger, and E.D. Sontag, editors, Hybrid Systems III, volume 1066 of Lecture Notes in Computer 
Science, pages 389-400. Springer Verlag, Berlin, Germany, 1996. 

[10] R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors. Hybrid Systems, volume 736 of Lecture 
Notes in Computer Science. Springer-Verlag, 1993. 

[11] T.A. Henzinger. Hybrid automata with finite bisimulations. In Z. Fülöp and F. Gecseg, editors, ICALP 
95: Automata, Languages, and Programming, pages 324-335. Springer-Verlag, 1995. 

[12] T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What's decidable about hybrid automata? In 
Proceedings of the 27th Annual Symposium on Theory of Computing, pages 373-382. ACM Press, 1995. 

[13] H. Hironaka. Subanalytic sets. In In Number Theory, Algebraic Geometry, and Commutative Algebra, in 
honor of Y. Akizuki, pages 453-493. KinokuniyaPublications, 1973. ■■—.-■ 

[14] W. Hodges. A Shorter Model Theory. Cambridge University Press, 1997. 
[15] A. Macintyre and A.J. Wilkie. On the decidability of the real exponential field. In Kreiseliana: About and 

around Georg Kreisel, pages 441-467. A.K. Peters, 1996. 
[16] O. Maler, editor. Hybrid and Real-Time Systems, volume 1201 of Lecture Notes in Computer Science. 

Springer-Verlag, 1997. 
[17] T. Niinomi, B.H. Krogh, and J.E.R. Cury. Synthesis of supervisory controllers for hybrid systems based 

on approximating automata. In Proceedings of the 1995 IEEE Conference on Decision and Control, pages 
1461-1466, New Orleans, LA, December 1995. 

[18] George J. Pappas, Gerardo Lafferriere, and Shankar Sastry. Hierarchically consistent control systems. In 
Proceedings of the 87th IEEE Conference in Decision and Control. Tampa, FL, December 1998. Submit- 
ted. 



4 

18 G. LAFFERRIERE, G. PAPPAS, AND S. SASTRY 

[19] George J. Pappas and Shankar Sastry. Towards continuous abstractions of dynamical and control systems. 
In P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors, Hybrid Systems IV, volume 1273 of Lecture 
Notes in Computer Science, pages 329-341. Springer Verlag, Berlin, Germany, 1997. 

[20] Anuj Puri and Pravin Varaiya. Decidability of hybrid systems with rectangular differential inclusions. In 
Computer Aided Verification, pages 95-104,1994. 

[21] J. Raisch and S.D. O'Young. Discrete approximations and supervisory control of continuous systems. IEEE 
Transactions on Automatic Control: Special Issue on Hybrid Systems, 43:4, April 1998. To appear. 

[22] Hector J. Sussmann. Subanalytic sets and feedback control. Journal of Differential Equations, 31(1):31- 
52, January 1979. 

[23] Hector J. Sussmann. Real-analytic desingularization and subanalytic sets:  An elementary approach. 
Transactions of the American Mathematical Society, 317(2):417-461, February 1990. 

[24] Alfred Tarski. A decision method for elementary algebra and geometry. University of California Press, 
second edition, 1951. 

[25] Dirk van Dalen. Logic and Structure. Springer-Verlag, third edition, 1994. 
[26] Lou van den Dries and Chris Miller. On the real exponential field with restricted analytic functions. Israel 

Journal of Mathematics, 85:19-56, 1994. 
[27] A. J. Wilkie. Model completeness results for expansions of the ordered field of real numbers by restricted 

pfaffian functions and the exponential function. Journal of the AMS, 9(4):1051-1094, Oct 1996. 
[28] A.J. Wilkie. A general theorem of the complement and some new o-minimal structures. Preprint, 1997. 

DEPARTMENT OF MATHEMATICAL SCIENCES, PORTLAND STATE UNIVERSITY, PORTLAND, OR 97207 

E-mail address: gerardofimth.pdx.edu 

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, UNIVERSITY OF CALIFORNIA AT 
BERKELEY, BERKELEY, CA 94720 

E-mail address: gpappasffleecs.berkeley.edu 

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, UNIVERSITY OF CALIFORNIA AT 
BERKELEY, BERKELEY, CA 94720 

E-mail address: sastryffleecs.berkeley.edu 


